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Abstract
We have extended Monte Carlo simulations of hopping transport in completely
disordered two-dimensional (2D) conductors to the process of external charge
relaxation. In this situation, a conductor of area L × W shunts an external
capacitor C with initial charge Qi . At low temperatures, the charge relaxation
process stops at some ‘residual’ charge value corresponding to the effective
threshold of the Coulomb blockade of hopping. We have calculated the root
mean square (rms) value QR of the residual charge for a statistical ensemble
of capacitor-shunting conductors with random distribution of localized sites in
space and energy and random Qi , as a function of macroscopic parameters of
the system. Rather unexpectedly, QR has turned out to depend only on some
parameter combination: X0 ≡ LWν0e2/C for negligible Coulomb interaction
and Xχ ≡ LWκ2/C2 for substantial interaction. (Here ν0 is the seed density
of localized states, while κ is the dielectric constant.) For sufficiently large
conductors, both functions QR/e = F(X) follow the power law F(X) =
DX−β , but with different exponents: β = 0.41 ± 0.01 for negligible and
β = 0.28 ± 0.01 for significant Coulomb interaction. We have been able
to derive this law analytically for the former (most practical) case, and also
explain the scaling (but not the exact value of the exponent) for the latter case. In
conclusion, we discuss possible applications of the sub-electron charge transfer
for ‘grounding’ random background charge in single-electron devices.

1. Introduction

Electron transport via inelastic hops between localized states in disordered conductors has
been studied for many years, with the main focus on the average transport characteristics
(e.g. dc current dependence on temperature and applied electric field) and, to a lesser extent,
on the 1/ f noise—see [1–4] for comprehensive reviews of this work. The relatively recent
observation [5–7] that hopping transport may provide quasi-continuous (‘sub-electron’) charge
transfer gave a motivation for the extension of this work to the statistics of the electric charge
Q carried over by the hopping current.
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Figure 1. The system under analysis (schematically).

The idea of the quasi-continuous charge transfer is quite simple: due to the electrostatic
polarization, each electron hop between two localized sites inside the conductor leads to a step-
like increase in the ‘external charge’ Q(t), which may be defined as the time integral of current
I (t) flowing through the wires connecting the conductor’s electrodes to the electric field source.
If an electron is transferred through the whole sample in one hop (as happens in the usual tunnel
junctions), the charge step |�Q| is equal to the fundamental charge e. However, if an electron
in an extended conductor hops between two sites which are separated by a distance �r much
less than the conductor length L, then the step |�Q| is of the order of e × (|�r |/L) � e.
(The exact expression depends on the sample and electrode geometry.) This means that the
charge transport becomes nearly continuous, just as in long diffusive conductors [7, 8]. This
phenomenon may have several useful applications in single-electronics, especially since the
hopping conductors (in contrast to their diffusive counterparts) may provide the necessary high
values of resistance R � h̄/e2 [9] without adding too much stray capacitance to that of single-
electron islands.

One of the manifestations of the quasi-continuous charge transport is the suppression of
the shot noise [4, 10, 11]. Namely, for sufficiently small values of the observation frequency f
(with a possible exception for the 1/ f noise at very low frequencies) the current noise spectral
density SI ( f ) becomes approximately Lc/L � 1 times the Schottky value 2eI , where Lc

is some characteristic length scale. This prediction [5] has been confirmed in several recent
experimental [12, 13] and theoretical [14–17] studies of hopping.

The goal of this work has been to study another manifestation of the quasi-continuous
charge transfer at hopping, which is more closely related to its most important potential
application: the ability to ‘ground’ sub-electron amounts of electric charge [9]. For this, we
have analysed the simple system shown in figure 1: a hopping conductor shunts an external
capacitance C with an initial charge Qi . The capacitance charge Q leads to a nonvanishing
electric field E = V/L = Q/C L applied to the conductor, which causes electrons to hop
through the conductor. These hops result in the gradual reduction of the charge Q and hence
the field E . At perfectly continuous (‘Ohmic’) conduction, the process would continue until
Q and E vanished completely (at T → 0); however, for hopping conductors of a finite size
L × W the charge relaxation stops at a certain finite residual charge which generally depends
not only on the macroscopic parameters of the system, but also on the particular distribution of
the localized sites over space and energy and on the initial charge Qi .
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Though qualitative experimental evidence of sub-electron charge relaxation was obtained
long ago [18, 19], to the best of our knowledge this phenomenon has never been studied in
detail. The objective of this work has been to study the dynamics of this charge relaxation
process and the statistics of the residual charge theoretically. The problem is essentially
classical, but multi-particle, highly nonlinear, and statistical, so that most results have to be
obtained by numerical (Monte Carlo) simulation using modern supercomputer facilities (see
the Acknowledgments section below).

2. Model

For the hopping conductor, we have used the same model whose average transport
characteristics and current noise had been extensively explored recently for the case of fixed,
constant applied field E [16, 17]. Briefly, the conductor is ‘fully frustrated’ in the sense that the
localized sites are randomly and uniformly distributed, with a constant ‘seed’ density of states
ν0, over both the rectangular 2D sample of area L × W and a broad interval of ‘seed’ energies
ε(0). The full energy U of the system is the sum of the ‘seed’ energies of all occupied sites and
the electrostatic energy of the Coulomb interaction of the hopping electrons with each other
and the external capacitance:

U =
∑

j

n jε
(0)
j + e2

2κ

∑

j,k �= j

(
n j − 1

2

) (
nk − 1

2

)
G(r j , rk) + Q2

2C
. (1)

Here, n j (equal to either 0 or 1) is the occupation number of the j th localized site, while κ is the
dielectric constant of the insulating environment1. For the simplest geometry of a 2D conductor
connecting two semi-space-shaped electrodes, the Green’s function G in equation (1) may be
expressed simply as a sum over the infinite set of image charges in the electrodes:

G(r j , rk) =
∞∑

n=−∞

[
1√

(2nL + xk − x j)2 + (yk − y j)2

− 1√
(2nL + xk + x j)2 + (yk − y j)2

]
. (2)

For this geometrical model, the total charge Q of the capacitor (including the polarization
component) is

Q = Qi −
[

Nee +
∑

j

e

(
n j − 1

2

)
x j

L

]
, (3)

where Qi is the initial charge and x j is the j th site position along the sample length L, while
Ne is the total number of electrons that have passed through the conductor from the start of the
relaxation process until the given moment. In the limit of large charge (|Q| � QR), the effect
of capacitance on hopping transport is equivalent to that of the electric field E = Q/C L.

Electron hops are permitted from any occupied site j to any unoccupied site k with the
rate

γ jk = � jk exp
(
−r jk

a

)
, (4)

where a is the localization length, and

h̄� jk
(
�U jk

) = g
�U jk

1 − exp
(−�U jk/kBT

) . (5)

1 Following most studies of the Coulomb interaction at hopping, we keep the conductor electro-neutral by adding an
effective background charge of −e/2 to each localized site.
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(a)
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Figure 2. Capacitance charge Q relaxation (at T = 0) for the cases of (a) negligible (χ = 0) and
(b) substantial (χ = 0.5) Coulomb interaction of hopping electrons. Thin lines show Monte Carlo
results (for six realizations of each case) for several values of external capacitance C , with fixed
conductor size L×W = 80×40a2. The thick grey curves correspond to the results of the solution of
equation (6) with equation (7) for panel (a) and equation (8) for panel (b) for C/C0 = 100, with the
central curve corresponding to the best-fit parameters A and B and the outer curves corresponding
to the uncertainty in these parameters. (See the text.) Time is measured in units of t0 ≡ h̄ν0a2/g,
while capacitance is expressed in units of C0 ≡ e2ν0a2.

Here, �U jk is the difference in the total system energy U before and after the hop, and
g is a small dimensionless parameter which affects only the scale of hopping conductivity
σ0 ≡ ge2/h̄. The numerical study has been carried out using the classical Monte Carlo
technique by Bortz et al [20] in the form suggested by Bakhvalov et al [21], which has become
the de facto standard for simulations of single-electron tunnelling [22]. An important feature of
this algorithm is that it is not slowed down by the gradual reduction of hopping rates at charge
relaxation.

3. Charge relaxation dynamics

Figure 2 shows, using thin lines, typical results of our Monte Carlo simulations for two values
of the dimensionless parameter of the Coulomb interaction strength, χ ≡ e2ν0a/κ . Note the
logarithmic timescale and the linear scale of Q; in such coordinates, the exponential relaxation
of average charge in an RC circuit with a linear Ohmic resistor looks like a sharp step down
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at t ≈ RC . We indeed observe such behavior at hopping when the initial electric field is low,
i.e. in the high temperature limit. However, motivated by prospects of practical applications [9],
our main focus is on the opposite, ‘high-field’ (low-temperature) limit. Figure 2 shows that, in
this case, the dynamics of discharge through the hopping conductor is rather different: it slows
down dramatically at Q → 0. This is exactly what should be expected from the previous studies
of variable-range hopping at constant applied field, which show that the hopping conductance
drops exponentially as the field decreases [1–3, 15–17]. A qualitatively similar dynamics is also
typical for the qualitatively close (but quantitatively different) problem of intrinsic relaxation
in electron glasses—see, e.g., recent publications [23–25] and prior work cited therein.

It has turned out that most of the relaxation process, while the charge is sufficiently large
(|Q| � QR), may be described well by the mean-field equation

dQ

dt
= −I (T, E, χ) = −σ (T, E, χ) EW, (6)

where σ(T, E, χ) is the nonlinear conductance in the constant applied field E . In the low-
temperature limit (kBT � eEr , where r is the average length of the hops contributing
substantially to the current), we can use the following analytical expressions obtained by
fitting the results of our numerical simulations of constant-field hopping within the same
model [16, 17]:

(i) If Coulomb interaction is negligible, χ3 � E/E0,

σ

σ0
≈ A (E, 0) exp

[
−

(
B(E, 0)

E0

E

)1/3
]

, (7)

where eE0a ≡ 1/ν0a2, while A(E, χ) and B(E, χ) are dimensionless, weak functions of
the applied field E and Coulomb interaction strength χ . In a prior study [16], we have
found the best fit for the pre-exponential (model-specific) function to be A(E, 0) = (9.2 ±
0.6)(E/E0)

(0.80±0.02), with B treated as a constant: B(E, 0) = 0.65 ± 0.02.
(ii) If Coulomb effects are substantial, then

σ

σ0
≈ A (E, χ) exp

[
−

(
B(E, χ)

χ E0

E

)1/2
]

. (8)

For the particular value of χ = 0.5, a similar approach to fitting gives [17] A(E, 0.5) =
(3.0 ± 0.4)(E/E0)

(0.72±0.07) with B(E, 0.5) = 1.68 ± 0.07.
For relatively low fields, E � E0, these formulas describe the so-called ‘high-field’

variable range hopping [26–30].
The broad grey curves in figure 2 show the results of integration of the mean-field equation

using these formulas for one value of capacitance C/C0 = 100. (The middle curves correspond
to the best-fit values, while the outer curves reflect the fitting uncertainties specified above.)
One can see that, at |Q| � QR, the relaxation results may be described well by the mean-field
approach. However, this approach does not work at Q → 0 where it predicts the complete
relaxation of charge, while in reality (and numerical experiment) the process stalls at a certain
‘residual’ charge.

4. Residual charge statistics

Figure 3 shows some of our results for the rms value QR of the residual charge, obtained for a
broad range of ‘macroscopic’ parameters of the system, including external capacitance C and
normalized Coulomb interaction strength χ , as a function of the conductor area L × W . (These
results do not change noticeably if the systems are annealed after the relaxation.)
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Figure 3. The rms value QR of the residual charge at T = 0 for negligible (χ = 0) and finite
(χ = 0.1 and 0.5) Coulomb interaction, as a function of the conductor area (L × W ) for different
external capacitances C , and two different aspect ratios (L:W = 2:1 and 1:1). Each point represents
data averaged over a large number (103) of conductor samples with vertical error bars corresponding
to the uncertainty of such averaging. (Error bars are shown on the figure, unless smaller than the
symbol size.) The thin lines are only guides for the eye. The bold horizontal line corresponds to
equation (9), while the bold tilted lines are the best power-law fits for large-sample data.

For sufficiently small samples, the number of localized sites is so low that no internal
hopping events may occur within the energy interval of interest, and the initial charge can
only relax by direct tunnelling between the electrodes, giving changes of Q in multiples of e.
The Coulomb blockade theory (see, e.g., [5]) shows that at low temperatures such tunnelling
is blocked at |Q| < e/2. If the initial charge Qi is random (as has been accepted in our
calculations), then the residual charge is uniformly distributed within the range from −e/2 to
+e/2, and the rms residual charge is

QR

e
= 1

e

[∫ e/2

−e/2
Q2 dQ

e

]1/2

= 1√
12

, (9)

in good accordance with the simulation results (figure 3).
On the other hand, if the conductor area is increased, QR decreases, since there are more

and more internal localized sites available for further charge relaxation. Our results (figure 3)
also show that QR always increases with capacitance C and, at substantial Coulomb interaction,
with its strength χ .

Rather unexpectedly, we have found that, for a broad range of system parameters, all these
dependences may be approximated very well by ‘universal’ laws, different for the cases when
Coulomb interaction is negligible (χ3 � QR/C L E0) or substantial—see figure 4. In the
former case, QR/e = F0(X0), where

X0 = LW

a2

C0

C
= LWν0

e2

C
, (10)

while in the latter case QR/e = Fχ (Xχ ), where

Xχ = LW

a2

C2
0

χ2C2
= LWκ2

C2
. (11)
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Figure 4. The same results for QR as in figure 3, re-plotted to emphasize their universal scaling
with system parameters. Solid lines show the best fits to the asymptotic behavior of QR for large
samples.

At small values of their arguments, both functions F tend to 1/
√

12, in agreement with
equation (9). Their asymptotic behavior is also functionally similar, F(X) → DX−β at
X → ∞, but with different best-fit values of the coefficients: for χ = 0, D = 0.64 ± 0.01 and
β = 0.41 ± 0.01, while for χ ∼ 1, D = 1.1 ± 0.1 and β = 0.28, with error bars of about 0.03
for the dependence on C and of the order of 0.01 for other variables contributing to Xχ .

5. Discussion

For the case of negligible Coulomb interaction, the asymptotic power law for function F0(X0)

may be readily explained, using the basic ideas of the Coulomb blockade [5]. Charge
relaxation continues with the reduction of the system energy (on the average, dominated by
the capacitor energy U ) until the number N of localized sites available for hopping becomes
less than one. If the capacitance charge before a hop is Q, the range of capacitive energy
of available initial sites is �U ∼ Q2/2C , so that the average number of such sites per unit
area is ni ∼ ν0�U ∼ ν0 Q2/2C , and their total number in the sample of area L × W is
Ni ∼ LWni ∼ LWν0 Q2/2C . In order to estimate N , we need to multiply Ni by the average
number N f of available final sites for each initial site. For small changes of charge, |�Q| � e,
the area |�x | × W where such states can reside is much smaller than the sample area L × W ,
because such charge change corresponds to a hop by distance |�x | = L × |�Q|/e � L.
Hence N f ∼ LWν0(|�Q |/e)(Q − �Q)2/2C and we get the following estimate

N ∼ Ni Nf ∼
(

LWν0

2C

)2 Q2|�Q|(Q − �Q)2

e
. (12)

Now, from the natural requirement that N drops below 1 as soon as |Q|, |�Q|, and |Q − �Q|
all become, on average, of the order of QR, we get

QR

e
∼

(
LWν0e2

C

)−2/5

= X0
−2/5, (13)
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which, when compared to the power law F(X) discussed above, gives β = 2/5 = 0.40,
i.e. inside the narrow interval 0.41 ± 0.01 given by the numerical experiment.

For the case of substantial Coulomb interaction of hopping electrons, the situation is more
complex—see, e.g., the discussion on pp. 435–443 of [3]. It is well documented that ‘external’
transport (bringing electrons into and out of the hopping conductor) may be well understood in
terms of the simple quasiparticles introduced by Efros and Shklovskii [2], with energy

ε j ≡ ε
(0)

j + e2

κ

∑

l �= j

(
nl − 1

2

)
G(r j , rl). (14)

In 2D systems, their density of states at low energies is [2]:

ν (ε) ≈ 2κ2

πe4
|ε|. (15)

If we naively repeat the above calculation of QR, just replacing ν0 with ν(ε) from the last
expression, we get

QR

e
∼

(
LWκ2

C2

)−2/9

= Xχ
−2/9, (16)

i.e. the experimentally observed universality (Xχ = LWκ2/C2), but with an exponent
β = 2/9 ≈ 0.22 which is significantly outside of the experimental interval 0.28 ± 0.01.

Actually, for intra-sample transport, more adequate quasiparticles may be the so-called
‘dipole excitations’ (essentially, electron–hole pairs with correlated energies) whose density
F(�, r) depends on both the pair energy � and the distance r between the pair components
(see [3] p 435). In contrast to constant-field transport, the residual charge statistics are
dominated by large-size pairs (hops), with x-component of the order of L(|�Q|/e) and y-
component of the order of W . If we neglect, for such hops, the interaction of the pair
components in comparison with �, then F depends only on energy:

F(�) =
∫ A

0
dε1

∫ 0

−A
dε2 ν(ε1)ν(ε2)δ(ε1 − ε2 − �). (17)

For energies � much less than both the cutoff energy A and the Coulomb gap width, this
integral yields

F =
(

2κ2

πe4

)2
�3

6
. (18)

Now, following the arguments used above, we can accept � ∼ Q2/2C , and take LW for the
possible area of the pair centers, and L(|�Q|/e)W for the pair area. After the integration of F
from 0 to �, for the possible number of pairs within our energy range we get

N ∼ 1

24

(
2κ2

πe4

)2( Q2

2C

)4

L2W 2 |�Q|
e

. (19)

Again, requiring that N ∼ 1 at Q, |�Q| ∼ QR, we get back to the estimate given by
equation (16).

It is not quite clear presently whether the discrepancy between these analytical arguments
and the results of our numerical experiments may be overcome by an account of electron–hole
pairs of smaller size, with strongly interacting pair components.
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g

Figure 5. Background charge ‘grounding’ using a hopping conductor (schematically).

6. Offset charge grounding

The results of this work allow one to estimate the prospects of applying hopping conductors as
‘grounding’ devices for the random background charge in single-electron devices. Figure 5
shows this idea for the example of a single-electron transistor [5, 9]. Charged impurities,
randomly located in the vicinity of the transistor’s single-electron island, induce on it a net
polarization charge. The ‘integer’ (e-multiple) part of this ‘background’ charge is automatically
compensated by tunnelling through the transistor’s tunnel junctions, but its fractional part
−e/2 < Q0 < +e/2 cannot be compensated in this way. This random charge is equivalent to
a random shift �Vg = Q0/Cg of the gate voltage; such shifts are one of the main obstacles on
the way toward integrated circuits using single-electron devices, because, for most of them,
the tolerable background charge range is as narrow as ∼0.1e [9]. The problem may be
solved by connecting the single-electron island to ‘ground’ through a hopping conductor which
would provide a slow relaxation of the background charge [9]. (For digital applications, the
characteristic relaxation time has to be much longer than at least the circuit clock cycle, and
more preferably the full time of the calculation performed by the circuit.)

For typical hopping conductors technologically compatible with silicon technology (e.g.
amorphous semiconductors and metal oxides), the dielectric constant κ is of the order of
10, while the electron effective mass m ∼ 0.2m0. This gives the localization radius a ∼
h̄2κ/me2 ∼ 3 nm and the level splitting scale e2/κa ≈ me4/κ2h̄2 ∼ 30 meV. In order to
stay on the dielectric side of the metal–insulator transition, the average distance between the
localized sites should be above ∼4a [1]; for the three-dimensional (3D) density of states ν3

this gives the condition ν3 � 1019 eV−1 cm−3. This condition is well satisfied, e.g. for most
species of amorphous silicon, where ν3 at mid-bandgap is of the order of 1016 eV−1 cm−3 (see,
e.g., [31]). For thin films of such material with thickness t ∼ a ∼ 3 nm, the 2D density of
states ν0 ∼ 3 × 109 eV−1 cm−2. For these parameters, the Coulomb interaction parameter χ is
much smaller than 1, and we can use equation (13) for estimates. Even for the least demanding
applications of single-electron devices, the electron addition energy e2/C should be at least
30 kBT [9], so that, according to equation (13), X0 has to be above ∼300.

Let us accept that L = W in order to minimize the conductors’ self- (‘stray’) capacitance
Cs (which, as we will show shortly, may present a major problem) at fixed area L × W . For
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the usual conditions of low-temperature experiments with single-electron devices, T ∼ 0.1 K,
C may be of the order of 10−14 F, so that, with our parameters, L should be above ∼30 nm.
This is less than the typical length (∼1 µm) of the single-electron island in such experiments,
so that the grounding idea may actually work2.

On the other hand, for the most important case of room-temperature single-electron devices
(T ≈ 300 K), the island capacitance should be much less, C < 10−18 F, so that the quasi-
continuous conduction is only possible at L � 15 µm. Stray capacitance Cs of such a conductor
would be larger than ∼10−15 F, i.e. much larger than C , thus increasing the total effective
capacitance of the island well above the acceptable value.

To summarize, our calculations indicate that the fractional charge grounding is possible,
but practicable only for low-temperature experiments rather than for room-temperature single-
electron devices. Fortunately, by now an alternative way to solve (or rather circumvent)
the random background charge problem in digital nanoelectronics has been suggested. This
approach is based on reconfigurable hybrid CMOS-nanodevice digital circuits which may be re-
routed around ‘bad’ devices—see, e.g., [32]. Recent calculations have shown that this approach
may provide defect tolerance up to ∼10% in memory circuits and >20% in logic circuits. This
is much higher than the estimated lower bound on the fraction (∼0.1% [9]) of single-electron
devices whose threshold is substantially shifted by random background charges.
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